Predicting Construction Litigation Outcome Using Particle Swarm Optimization

نویسنده

  • Kwok-Wing Chau
چکیده

Construction claims are normally affected by a large number of complex and interrelated factors. It is highly desirable for the parties to a dispute to know with some certainty how the case would be resolved if it were taken to court. The use of artificial neural networks can be a cost-effective technique to help to predict the outcome of construction claims, on the basis of characteristics of cases and the corresponding past court decisions. In this paper, a particle swarm optimization model is adopted to train perceptrons. The approach is demonstrated to be feasible and effective by predicting the outcome of construction claims in Hong Kong in the last 10 years. The results show faster and more accurate results than its counterparts of a benching backpropagation neural network and that the PSO-based network are able to give a successful prediction rate of up to 80%. With this, the parties would be more prudent in pursuing litigation and hence the number of disputes could be reduced significantly.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Split-Step PSO Algorithm in Predicting Construction Litigation Outcome

Owing to the highly complicated nature and the escalating cost involved in construction claims, it is highly desirable for the parties to a dispute to know with some certainty how the case would be resolved if it were taken to court. The use of artificial neural networks can be a cost-effective technique to help to predict the outcome of construction claims, on the basis of characteristics of c...

متن کامل

S3PSO: Students’ Performance Prediction Based on Particle Swarm Optimization

Nowadays, new methods are required to take advantage of the rich and extensive gold mine of data given the vast content of data particularly created by educational systems. Data mining algorithms have been used in educational systems especially e-learning systems due to the broad usage of these systems. Providing a model to predict final student results in educational course is a reason for usi...

متن کامل

Prediction of Construction Litigation Outcome Using a Split-Step PSO Algorithm

The nature of construction claims is highly complicated and the cost involved is high. It will be advantageous if the parties to a dispute may know with some certainty how the case would be resolved if it were taken to court. The recent advancements in artificial neural networks may render a costeffective technique to help to predict the outcome of construction claims, on the basis of character...

متن کامل

Prediction of Stock Price using Particle Swarm Optimization Algorithm and Box-Jenkins Time Series

The purpose of this research is predicting the stock prices using the Particle Swarm Optimization Algorithm and Box-Jenkins method. In this way, the information of 165 corporations is collected from 2001 to 2016. Then, this research considers price to earnings per share and earnings per share as main variables. The relevant regression equation was created using two variables of earnings per sha...

متن کامل

Integration of Fuzzy Logic, Particle Swarm Optimization and Neural Networks in Quality Assessment of Construction Project

The current paper presents an approach that integrates soft-computing techniques in order to facilitate the computer-aided quality assessment of construction project. We confirmed the weight of each index quantitatively by mean s of Group-decision AHP according to an established index system. Then, we defined the elements of an assessment matrix using fuzzy and a quality assessment model for co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005